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ABSTRACT 

The effects of irregular in situ ocean sampling on estimates of annual globally 

integrated upper Ocean Heat Content Anomalies (OHCA) are investigated for sampling 

patterns from 1955 to 2006.  An analytical method is presented for computing the 

effective area covered by an objective map for any given in situ sampling distribution.  

To evaluate the method, appropriately scaled sea surface height (SSH) anomaly maps 

from Aviso are used as a proxy for OHCA from 1993 to 2006.  Use of these proxy data 

demonstrates that the simple area integral (SI) of such an objective map for sparse data 

sets does not agree as well with the actual integral as the weighted integral (WI), defined 

as the simple integral weighted by the ratio of the total area over the “observed” area.  

From 1955 to 1966, in situ ocean sampling is inadequate to estimate accurately annual 

global integrals of the proxy upper OHCA.  During this period, the SI for the sampling 

pattern of any given year underestimate the 13-year trend in proxy OHCA from 1993 to 

2006 by around 70%, and confidence limits for the WI are often very large.  From 1967 

to 2003 there appear to be sufficient data to estimate annual global integrals.  Limited by 

the constraints of this analysis, the SI for any given year’s sampling pattern still 

underestimate the 1993 to 2006 13-year trend in the proxy by around 30%, but the WI 

match the trend well with small confidence limits.  For 2004 through 2006 in situ 

sampling, with near-global in situ Argo data coverage, the 1993–2006 13-year trend in 

the proxy is equally well represented by the SI or WI. 

  

 



 3 

 

1. Introduction 

Most of the Earth’s warming signal arising from anthropogenic climate change 

is thought to reside in the upper ocean (Hansen et al. 2005; Levitus et al. 2005).  To 

understand past and present global warming trends, and so to provide data for 

improvement of predictions of future changes, it is necessary to refine estimates of 

global upper Ocean Heat Content Anomalies (OHCA) and their uncertainties.  Here the 

effect of the irregular sampling of the world's ocean over the last half-century on annual 

global OHCA estimates is quantified, and a different method of integration that may 

improve those estimates is proposed. 

There are several ways to compute the global integral of mapped in situ data 

(Wunsch et al. 2007; Gille 2008).  Two of them are compared here.  One of these is a 

straightforward area integral of objectively mapped data.  Because objective maps relax 

back toward the mean in data-sparse regions, this method generally assumes zero 

anomalies in regions that are not sampled.  It will be referred to as the simple integral 

(SI) throughout this paper.  The second method can be thought of as a weighted area 

integral only over regions with good data coverage weighted by the fraction of the 

ocean used where there are observations.  This method assumes that the spatial mean of 

the anomalies in the unsampled regions is the same as the mean for the sampled 

regions.  It will be referred to as the weighted integral (WI) throughout the paper. 

Irregular historical in situ sampling of the oceans in both space and time 

complicates model/data comparisons.  For instance, the variability in the global integral 

of upper OHCA depends on how data-poor regions are treated when integrating.  It 
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turns out that the SI of objective maps have different variability than the WI (Gregory 

et al. 2004; AchutaRao et al. 2006; Gille 2008), making it difficult to validate the 

warming signal in a given model by comparing globally integrated model OHCA 

products to the SI of data-based OHCA maps.  Furthermore, local regional trends in 

OHCA are large and variable, with some regions cooling for a time while other regions 

warm (e.g., Harrison and Carson 2007).  Because of this small-scale variability in the 

decadal trends, the WI assumption that the trend in sampled regions is the same as in 

unsampled regions only holds on larger scales and not on regional scales.  This 

variability, combined with sparse data coverage, has led some to conclude that 

historical data may not be sufficient to discern a global warming trend (Harrison and 

Carson, 2007).   

One method used to improve comparisons of models with existing data is to 

sample model output at the same locations and times where the actual ocean is 

sufficiently sampled (e.g., Gregory et al. 2004; AchutaRao et al. 2006; Pierce et al. 

2006).  In these comparisons subjective criteria have been used to select areas where 

the number of observations is deemed sufficient to make a comparison.  The WI 

generated from observational data and identically sampled model output can 

significantly improve agreement in OHCA comparisons.  These comparisons suggest 

that these models are doing a good job of simulating global ocean heat content 

increases that are primarily due to anthropogenic climate change. 

In situ ocean observation-based estimates of the globally integrated OHCA time 

series are a useful model benchmark and an important diagnostic for changes in the 

Earth’s climate system (Hansen et al. 2005; Levitus et al. 2005).  Recently 



 5 

observational estimates of the global integral of OHCA tend to be calculated as SI of 

objective maps (Willis et al. 2004; Levitus et al. 2005; Ishii et al. 2006).  While the 

complexity and sophistication of these objective analyses varies, they nearly all have 

anomalies that relax toward zero in areas of sparse data coverage.  The integrals of 

these maps are affected by this tendency.  Here a method for computing the fraction of 

the “observed” area in an objective map is derived (Appendix A) from the scales and 

methods used in the mapping.  The SI and WI are compared side by side.  To quantify 

the effects of irregular sampling on these integrals delayed-mode Aviso satellite sea 

surface height (SSH) anomalies are scaled appropriately to produce a synthetic data-

based proxy for the global upper OHCA record from 1993 through 2006.  Satellite SSH 

fields are not truly global, have possibly undefined errors, and along with heat content, 

include signals from freshwater variations (Willis et al. 2004; Wunsch et al. 2007).  

Besides including freshwater variations and deep variability, satellite SSH fields also 

contain mass (bottom pressure) signals (Gill and Niiler 1973; Ponte 1999).  These 

potential complications notwithstanding, the SSH maps constitute a useful, continuous, 

high-resolution, and nearly global observational record over the ice-free oceans that 

have been shown to be correlated with in situ upper OHCA observations (White and 

Tai 1995; Gilson et al. 1998; Willis et al. 2004).  However, there are regions where the 

correlation is not strong (Figure 4 in Willis et al. 2004).  For the purpose of this 

analysis, the synthetic estimate of OHCA from SSH is considered the complete global 

estimate of OHCA. The synthetic OHCA record from 1993 through 2006 is subsampled 

at the locations and time of the year that in situ data were collected for all years 

between 1955 to 2006 to see how yearly sampling patterns affect both the linear trend 
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in globally integrated OHCA from 1993 to 2006 and sampling errors on the global 

integrals during those years. 

Applying these methods to sampling patterns for any year prior to 1993 

indicates how well the historical sampling for that year would have performed in 

estimating the global integral and its trend over the 13 years of Aviso SSH.  Trends in 

OHCA vary from decade to decade and location to location  (Harrison and Carson 

2007).  These decadal changes make estimates of pre-1993 sampling errors likely to be 

only a rough approximation of the true sampling errors.  

Here the focus is on how historical sampling of world oceans affects global 

annual OHCA values and their errors along with developing and evaluating an 

appropriate scheme for constructing the WI of OHCA maps from in situ data.  The 

scheme derived here estimates the effective area or “observed” area used in the WI 

from the scales and methods used in the mapping.  Hence the effective area is estimated 

from the mapping procedures used, rather than using a subjective selection criteria such 

as the number of observations in a bin.  Unknown, potentially large, and difficult to 

quantify instrument biases that may affect the SSH fields (Wunsch et al. 2007) are 

ignored.  Possible errors in the covariance function and the climatology that could 

impact estimates of upper OHCA based on in situ data (AchutaRao et al. 2007; Wunsch 

et al. 2007) are also ignored. 

The data used to define the in situ sampling distribution, the satellite SSH 

anomaly fields used as a proxy for upper OHCA, and the objective mapping techniques 

are discussed in section 2.  The spatial and temporal structures of the data distribution 

are analyzed in section 3.  The effects of irregular sampling are investigated in section 4 
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for 13-year trends and in section 5 for 3- to 13-year trends.  An estimate of the 

sampling error on the global integral of OHCA is computed in section 6.  The results 

are discussed and summarized in section 7. 

 

2. Data and mapping 

In situ ocean temperature measurements are a mixture of data mostly from 

reversing thermometers used at hydrographic stations, Mechanical BathyThermograph 

(MBT) profiles, eXpendable Bathythermograph (XBT) profiles, ship board 

conductivity-temperature-depth (CTD) profiles, moored buoy thermistor records (many 

from the Tropical Atmosphere Ocean array), and autonomous profiling CTD float data 

(primarily from Argo).  The data used here were obtained from the World Ocean 

Database 2005 (Boyer et al. 2006), the Global Temperature & Salinity Profile Project 

(GTSPP), and the Argo Global Data Assembly Centers.  Because of known but as yet 

not completely resolved biases among data from different instrument types (AchutaRao 

et al. 2007; Gouretski and Koltermann 2007; Wijffels et al. 2008; Willis et al. 2008), no 

attempt is made here to produce a heat content curve from in situ observations.  Instead, 

the effects of irregular sampling are analyzed using a synthetic estimate of OHCA from 

sea surface height (SSH). 

 Nonetheless, the in situ data were subject to some basic quality control (QC) 

procedures to identify valid in situ data locations in the historical record.  In order to 

remove duplicates between the different databases, profiles within 15 minutes in time 

and 3.6 arc seconds in space were removed from the GTSPP.  This process was 

repeated twice.  Profiles with insufficient vertical resolution were also discarded.  To 
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have sufficient vertical resolution, the upper 400 m of the profiles were required to 

contain at least six data points flagged as good, a good measurement in the upper 30 m, 

a maximum good measurement depth exceeding 300 m, and depth spacing no more 

than twice that of the standard depths used in the World Ocean Database.  Retained 

profiles were then subjected to further QC in World Meteorological Organization 

(WMO) squares.  Squares with small numbers of profiles were combined.  Then, by 

visual inspection, profiles with obviously spurious data compared to the bulk of the 

data in each square were discarded.  Finally, OHCA estimates within these squares that 

fell outside of four standard deviations were discarded.  The profiles that were left were 

considered good profiles, and SSH subsampled at their locations and times was used to 

estimate the depth-integrated OHCA in the upper 750 m. 

Mapped satellite SSH anomaly estimates come from subsampled combined 

Aviso SSH.  This product is an optimal merging of SSH from multiple platforms: 

Topex/Poseidon, Jason, ERS-1/2, and Envisat.  The resulting product has 7-day 

temporal and approximately 150–200 km spatial resolution (Ducet et al. 2000).  In this 

analysis SSH anomalies are used as a surrogate for upper ocean heat content anomalies 

by exploiting the strong correlations between SSH anomalies and available in situ 

estimates of OHCA  (White and Tai 1995; Gilson et al. 1998; Willis et al. 2004; Lyman 

et al. 2006).  These correlation coefficients vary geographically.  However, here a 

global average regression coefficient of 51 ± 13 zeta-joules cm–1 is used (Lyman et al. 

2006), where the error represents the spatial standard deviation. 

Objective mapping (e.g., Wunsch 1996) covariance functions, correlation length 

scales, and signal-to-noise ratios used here follow those adopted by Willis et al. (2004) 
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and used again in Lyman et al. (2006).  These techniques, functions, and values apply 

to both the objective maps generated from subsampled Aviso SSH fields and to the 

fraction of “observed” area computed for these maps (Appendix A).  Following Willis 

et al. (2004), the record-length mean is removed from each location from the SSH 

fields.  Then, the annual cycle, in this case based on quarterly means of the 1993–2006 

anomalies of the Aviso SSH record, is removed.  As with the in situ OHCA, removing 

the annual cycle based on quarterly means leaves some of the annual variability in the 

data, producing fields that are comparable to in situ observations.  The resulting fields 

are then subsampled at the location and time of the year for a given year’s in situ data 

sampling and grouped into 1-year bins centered on the middle of each year.  These 

grouped data are then spatially mapped.  The mapping is a simple objective map 

containing both a small scale (~100 km) and a large scale (~1000 km) in its covariance 

function (Willis et al. 2004).  The correlation function used in the objective map also 

includes a signal to noise ratio along the diagonal, to account for unresolved 

geophysical variability at timescales less than a year and is based on the Zang and 

Wunsch (2001) spectra. 

 

3. Data distribution 

 In situ upper ocean sampling has varied substantially both spatially and 

temporally over the last half-century.  Between 1955 and 1966, the percentage of the 

“observed” ice-free upper ocean increased from near 20 to 40% (Fig. 1).  With 

widespread XBT use starting in 1967, the fraction of the ocean represented in that 

year’s annual map rose to 48%.  This fraction continued to rise to around 75% during 
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the 1980s and 1990s as programs such as the World Ocean Circulation Experiment 

(WOCE) were implemented.  WOCE spun down in the late 1990s, and the sampling 

area decreased to 63% by 2000.  Some of this decrease may be eliminated for the last 

decade once data have made their ways from originators to the World Ocean Database, 

as there can be a multi-year lag for this process.  In addition, efforts to gather historical 

data by NOAA’s National Ocean Data Center have and should continue to help to 

increase data coverage in past years.  The percentage of area sampled increases again 

after 2000 as more and more Argo autonomous profiling CTD floats begin reporting 

data in real time.  For every succeeding year since 2004, as Argo has been approaching 

its target of global sampling with 3000 active floats (achieved by November 2007), the 

area sampled has been a record, with 89% coverage reached in 2006. 

The method for computing the “observed” area (see Appendix A) takes into 

account the covariance functions, correlation length scales, and error energies used in 

the objective mapping described in Section 2.  This method contrasts with the practice 

of using subjective criteria on a number of observations in an averaging bin to select 

bins with sufficient measurements for use in computation of a WI or other quantity.  

The data-based estimate of signal to noise ratio added to the diagonal of the correlation 

function results in a low area coverage in regions with few observations. 

The spatial distribution of observations evolves with changing methods of data 

collection.  In the pre-XBT era, here analyzed starting in 1955 and ending in 1966, the 

upper ocean was sparsely sampled.  Most of the observations were concentrated near 

coastlines in the northern hemisphere (Fig. 2).  As XBTs came into use, the spatial 

coverage dramatically increased from 1967 through 2003 (Fig. 3).  For this period most 
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of the northern hemisphere is well sampled with contrasting sparse coverage in the 

southern hemisphere, where shipping lanes are more widely spaced.  From 2004 

through 2006, Argo profiling CTD float data provide a fairly even spatial distribution 

of data throughout most of the ice-free oceans for in situ OHCA estimates (Fig. 4). 

Aviso SSH maps are available from 1993 through 2006.  During this period in 

situ sampling of OHCA changed from primarily XBT data along shipping routes to 

more even global coverage by the autonomous profiling CTD floats of Argo.  This 

change is evident in the standard deviation of the “observed” sampling areas for annual 

objective maps of in situ OHCA data during this time period (Fig. 5).  Large sampling 

variations are evident south of about 40°S in the Pacific Ocean, and even further north 

in parts of the South Atlantic and Indian Oceans.  The irregular and poor sampling in 

the Southern Ocean prior to Argo contributes to uncertainty of global OHCA integrals 

(AchutaRao et al. 2007; Gille 2008).  For example, sparse and seasonally biased 

sampling in the Southern Ocean could corrupt the estimates of means and seasonal 

cycles, and thus annual OHCA estimates.  While these are real and important problems, 

they are not investigated here nor do they affect the results presented here, as the Aviso 

SSH records used here as a proxy for OHCA are well resolved. 

 

4. 13-year warming trends  

The fully resolved synthetic SSH estimate of the upper OHCA curve has a 

warming trend of 0.9 ± 0.1 W m–2 from 1993 through 2006 (Fig. 6, grey line), as 

estimated by a linear fit.  Here and throughout the paper, OHCA trends are estimated by 

linear fits and are normalized to the area of the earth (Levitus et al. 2005; Lyman et al. 
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2006). As mentioned in section 2, the synthetic estimate contains signals besides just 

upper OHCA (most obviously, changes in ocean mass), is likely an overestimate of the 

true warming of the upper ocean (Willis et al. 2004), and should not be taken as an 

accurate estimate of the actual ocean warming. 

Trend errors are expressed as 95% confidence intervals of the slopes of the 

linear fits.  All estimates of standard errors in this paper reflect statistical error due to 

how well a line fits a set of data or how closely integrals of subsampled synthetic 

OHCA can reproduce the integral of the whole map, and are therefore limited to the 

confines of the assumptions of this subsampling exercise.  These limitations include 

uncertainties due to the fact that SSH contains variability other than Upper OHCA (as 

discussed above).  Additionally, the time period over which the 13-year trend is 

estimated (1993 to 2006) contains different phases of known modes of interannual 

variability such as El Niño-Southern Oscillation (ENSO), the Southern Annular Mode 

(SAM), the Indian Ocean Dipole (IOD), the North Atlantic Oscillation (NAO), the 

Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal Oscillation (AMO), and 

Arctic Oscillation (AO) than from sampling periods from which the trends are 

estimated (1955 to 2006). These uncertainties, along with possible unknown instrument 

biases that could affect the correlation between SSH and upper OHCA, would more 

than likely increase the estimate of the standard error shown in this paper. 

To examine the effects of irregular sampling on the 13-year warming trend, the 

synthetic upper OHCA was subsampled at the in situ data locations from 1993 to 2006.  

The resulting data were mapped and then spatially integrated.  When spatially 

integrating the subsampled global OHCA maps it is necessary to define the method of 
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computing a global integral (Appendix A).  Two of the simplest choices are (1) the SI, 

where OHCA values are assumed to tend toward zero in locations and times where 

there are few measurements, and (2) a WI, where the values of OHCA in regions that 

are not “observed” are assumed to be the same as the global mean in the “observed” 

regions (Appendix A). 

Both of the methods are able to produce a trend within the confidence intervals 

on the complete synthetic trend (Fig. 6).  The SI underestimate the synthetic trend at 0.8 

± 0.1 W m–2 while the WI overestimate the synthetic trend at 1.0 ± 0.1 W m–2.  Neither 

trend estimate is significantly different from the trend for the fully resolved data set, but 

individually they barely agree with each other.  While this assessment of how the in situ 

sampling from 1993 through 2006 reproduces the synthetic warming trend over that 

period is useful, it says little of how the different sampling eras and integration 

assumptions affect the estimates of the synthetic trend. 

By subsampling every year of the 13-year synthetic upper OHCA like the data 

distribution for a given year, it is possible to construct a 13-year time series of annual 

upper OHCA estimates for that single year’s sampling pattern.  This subsampling 

strategy differs from the one just presented in that it yields an annual upper OHCA time 

series from 1993 through 2006 for each year's data distribution.  The results can be used 

to estimate sampling errors for any given year and assess the two different methods for 

global integration of OHCA.  Because this strategy depends only on knowing the 

sampling pattern for the year under study, it can be applied to assess errors associated 

with historical sampling for years before Aviso SSH was available.  The estimates of 

the trend for historical sampling before 1993 are only applicable to the complete trend 
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in as much as the 1993 to 2006 period represents the time period in which the data were 

taken. 

The SI for sparse historical sampling patterns generally produce underestimates 

of the actual 1993–2006 synthetic warming trend.  For instance, the very sparse 1955 

sampling pattern produces a very low, 0.1 ± 0.1 W m–2 (Fig. 7, upper panel), estimate 

of the 13-year synthetic warming trend from the SI.  This estimate is only a small 

fraction of the complete synthetic warming trend of 0.9 ± 0.1 W m –2.  Even the much 

better sampling pattern for 1995 results in a SI for the 1993–2006 period that estimates 

a synthetic warming trend, 0.7 ± 0.1 W m–2  (Fig. 7, lower panel), that is significantly 

less than the complete synthetic trend. 

In situ ocean sampling patterns for every year (but the last few years) of the last 

half century result in significant underestimates of the 1993–2006 synthetic warming 

trend using the SI (Fig. 8).  In the pre-XBT area of sampling, 1955–1966, the warming 

estimates range from 10–50% of the complete synthetic trend.  The fraction of the 

synthetic trend estimated from the SI increases slowly to about 75% of the complete 

synthetic trend from 1967–2003.  It is not until the Argo array approaches sparse global 

coverage in 2004 that the synthetic warming trend estimated from the SI for that year’s 

sampling pattern is within the 95% confidence interval of the complete synthetic 

warming rate.  The 95% confidence interval for the synthetic linear trend estimated 

from the SI stays near ±0.1 W m–2 for all of the 53 years of data coverage (Fig. 8, lower 

panel). 

Estimates of the global synthetic warming trend in annual upper OHCA from 

the WI (Fig. 8, upper panel) are always within the confidence interval on the WI (Fig. 
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8, lower panel).  For pre-1967 sampling patterns, the synthetic trend estimates from the 

WI oscillate noticeably about the complete synthetic estimate.  For post-1967 sampling 

patterns the synthetic trend estimates are remarkably close to the complete synthetic 

trend.  While the WI produces an estimate closer to the complete synthetic trend, the 

process of dividing by fraction of “observed” area (Appendix A) can significantly 

increase the 95% confidence intervals for that estimate (Fig. 8, lower panel).  This 

increase is largest when the data coverage is sparsest.  For instance, the 95% confidence 

intervals for the trend estimate from the WI for the 1955 sampling pattern are 7 times 

larger than the confidence intervals for the trend from the fully resolved data set.  As 

the data coverage increases, the confidence interval on the synthetic trend estimated 

from the WI decreases, reaching twice the complete synthetic level in 1967 and finally 

approaching the complete synthetic level by the 1990s. 

 

5. Three- to 13-year trends  

The method of computing the integral also affects how well the historical in situ 

sampling patterns reproduce linear warming trends over intervals between 3 and 13 

years.  As for the 13-year trend, the fidelity and confidence intervals for warming 

trends over these shorter intervals are examined by subsampling the synthetic upper 

OHCA. 

A composite of estimated synthetic trends is used to examine how well different 

timescales are reproduced during different eras of sampling.  This analysis is performed 

by estimating the linear trend from different segments of the 1993–2006 13-year 

synthetic upper OHCA curve for each sampling pattern from 1955 to 2006.  The shorter 
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the trend, the more estimates in a particular sampling distribution.  The results of these 

fits are summarized by era (Figs. 9–10). 

 For all timescales, before the widespread use of the Argo floats (1955 to 2003), 

the WI are able to reproduce the complete synthetic trend within the confidence interval 

while the SI produce trends that are well below those values (Fig. 9).  In the pre-XBT 

era, 1955 to 1966, the SI underestimates the complete synthetic trends by 0.6 to 0.7 W 

m–2 for all timescales (Fig. 9, upper panel).  The WI during that same era only 

underestimates the complete synthetic trend by <0.1 W m–2, well within 95% 

confidence intervals for the complete synthetic values.  Unlike those for the trends 

produced from the SI, the confidence level on the trends from the WI is strongly 

dependent on timescale.  At shorter timescales, 95% confidence limits are near 0.8 W 

m–2, close to the complete synthetic 13-year warming trend of 0.9 W m–2.  At longer 

timescales the 95% confidence intervals for synthetic trends estimated from the WI 

approach 0.3 W m–2.  

As the sampling increases during the XBT era (1967 to 2003), the mean 

difference from the complete synthetic warming trend also decreases (Fig. 9, lower 

panel).  The SI produce synthetic trends that are an underestimate of about 0.3 W m–2 at 

all timescales.  These trends lie near the outside edge of the 95% confidence interval.  

In contrast, the linear synthetic trends produced from the WI during the XBT era match 

the complete synthetic trend within ±0.01 W m–2, indicating that synthetic trends 

estimated from the WI are effectively the same as the complete synthetic trends.  The 

means of the synthetic trends produced from the WI all lie well within the 95% 
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confidence intervals, which, as in the pre-XBT era, start out large (0.3 W m–2) for 

shorter timescales but decrease to about 0.1 W m–2 for longer timescales.   

 When Argo provides near-global coverage (2004–2006), trends from the WI 

overestimate the complete synthetic trends by about 0.05 W m–2 for all timescales 

studied (Fig. 10).  In contrast, synthetic trend estimates from the SI are underestimates 

by about 0.1 W m–2 for all timescales.  For both methods of computing the integrals, the 

synthetic trends estimated by mapping subsampled data agree with the complete 

synthetic trends within 95% confidence intervals.   

 

6. Sampling error 

Sampling error is estimated from the standard deviation of the difference 

between complete synthetic values of annual globally integrated upper OHCA and 

estimates based on the SI or WI (Lyman et al. 2006).  Because the data sets have been 

updated, a slightly more stringent QC has been employed, and 2 more years of delayed-

mode Aviso data have been added since that study, the sampling errors presented here 

for the SI are slightly larger than those shown in Lyman et al. (2006).  Sampling errors 

computed from the WI are less than those computed from the SI for most of the record 

(Fig. 11).  The larger errors from the SI are a reflection of the large underestimates of 

the trends (see section 3).   

 Over both the pre-XBT and XBT eras, the SI produces sampling errors that are 

about twice those of the WI.  The exception is 1955, when the noise introduced by use 

of the WI is larger than that introduced by the underestimated trend.  From 2004 to 

2006, as global coverage increases, the two estimates converge.  
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 Sampling error decreases as the sampling area increases.  Sampling error starts 

out high in 1955: 50 zeta joules for the SI and 60 zeta joules for the WI.  As XBTs 

come into wide use after 1967 sampling errors level out near 20 zeta joules for the SI 

and 10 zeta joules for the WI.  Finally, with the Argo array approaching its target of 

near-global sampling with 3000 profiling CTD floats, the different estimates of the 

sampling error overlap near 5 zeta joules in 2005 and 2006. 

 

7. Discussion and conclusions 

Irregular sampling of the Earth’s oceans from 1955 to 2006 impacts estimates of 

interannual to decadal trends of global integrals of upper OHCA.  The impact depends 

on the method used to estimate the global integrals.  Integrals of annual maps made 

from an OHCA proxy between 1993 and 2006 using sampling patterns from a given 

year are computed using two different methods.  Synthetic warming trends in the global 

integral of upper OHCA on timescales between 3 and 13 years are significantly 

underestimated using the SI but are consistently estimated within 95% confidence 

limits using the WI based on 1993–2006 Aviso SSH.  From 2004 through 2006, as 

Argo approaches global coverage, the estimates of synthetic trends using either method 

with those years’ sampling patterns converge and agree with the complete synthetic 

estimates within 95% confidence intervals. 

 For the spatial patterns observed in SSH from 1993 to 2006, there is not 

sufficient in situ data coverage before 1967 to estimate the global integral of synthetic 

upper OHCA, regardless of the method used to compute the spatial integral.  For 

sampling patterns from this pre-XBT era, spatial integrals based on the SI grossly 
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underestimate the synthetic trend for 1993–2006 by 0.7 W m–2 or 70% (Fig. 8).  On the 

other hand, the WI masks the complete synthetic trend by increasing the statistical error 

on the linear fit.  This masking is seen in the increase in the 95% confidence interval to 

0.6 W m–2, or 66% of the synthetic slope, for the 1955 sampling pattern (Fig. 8).  Given 

pre-XBT sampling patterns, neither of these methods is adequate to estimate the 

complete synthetic 13-year linear trend of 0.9 ± 0.1 W m–2. 

After the introduction of the XBT, but before Argo began providing global 

coverage (1967 to 2003), the sampling density increased and the errors on the synthetic 

trend decreased, so that the 95% confidence interval for the 13-year warming trend was 

about 0.1 W m–2 using either the SI or the WI.  During this era, the SI significantly 

underestimates the 13-year synthetic trend by 0.3 W m–2 or 30% (Fig. 8).  Conversely, 

the WI accurately reproduces the 13-year synthetic trend within the 95% confidence 

interval. 

For the most recent sampling distribution (2004 to 2006), with Argo 

approaching the goal of near-global sampling, the annual global integral of OHCA is 

accurately estimated at all scales regardless of spatial integration method (Fig. 10).  The 

WI tends to slightly (but statistically insignificantly) overestimate the trend by 0.07 W 

m–2 during the Argo sampling era.  This slight discrepancy could be due to an 

overestimate of the error energy used in the objective maps or because under-sampled 

regions warmed at a slower rate than well-sampled regions. 

Of the two methods for computing global integrals considered in this paper, the 

WI appear to produce more accurate estimates of the global integral of synthetic OHCA 

than the SI.  This is not surprising, in that the WI assumes that unsampled regions of the 
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world’s ocean warm at the same 13-year warming rate as the sampled regions.  While 

this is clearly not true on small spatial scales or for times when the ocean is well 

sampled (2004 to 2006) (Harrison and Carson 2007), this assumption seems to hold on 

large spatial scales over decades (Levitus et al. 2000) and is consistent with analyses 

showing that the Southern Ocean, the largest undersampled area, has warmed since the 

1950s (Gille 2002). 

An additional infill experiment was performed on Argo data from 2004 to 2006 

to determine how well the global integral matched the integral of OHCA over the 

Southern Ocean (the oceans south of 30°S).  Using a climatology based on the World 

Ocean Database 2005 both the SI and WI were computed removing Argo data in the 

Southern Ocean (not shown).  These results were compared to the SI over the whole 

Argo data set.  As with the synthetic OHCA, the WI produced a more realistic value of 

the globally integrated OHCA than the SI. 

These results suggest that the WI is the preferable method for estimating 

historical OHCA global integrals at annual timescales.  However, it is important to 

remember that these results are based on how well in situ sampling reproduces trends in 

Aviso SSH anomalies, which are here scaled for use as a proxy for upper OHCA or 

over short timescales.  It seems likely, for example, that the global integral of SSH 

includes a significant large-scale freshwater component in addition to thermosteric 

expansion (Wunsch et al. 2007).  It is also conceivable that interannual variability in 

globally integrated OHCA may be underestimated by the SSHA proxy.  If this were 

true, the statistical error in the 13-year trend from the WI would be disproportionately 

underestimated compared to the error on the 13-year trend computed from the SI. 
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While it may not be certain that the WI is preferable, it has been shown that the 

two integration methods can produce significantly different results, both of which 

should be used in examining historical trends in OHCA if for nothing more than to 

quantify the sensitivity of the estimates to different methods of computing global 

integrals. 

Sampling errors from 1967 to 2006 are adequate to estimate synthetic trends in 

OHCA (Fig. 11).  Prior to 1967, both methods produce large errors in globally 

integrated upper OHCA, reaching 60 zeta joules in 1955 with the WI.  The errors 

computed from the WI are likely a more realistic representation of the synthetic 

sampling error than those from the SI, in that the errors computed from the WI come 

from the scatter about the complete synthetic value, whereas the errors from the SI are 

related to its underestimation of the synthetic warming trend. 

 In terms of the sampling errors, in situ sampling patterns from 1967 to 2006 

appear to be adequate to estimate trends in globally integrated upper OHCA, especially 

if the WI is used for the pre-Argo years when coverage was not truly global.  However, 

sampling errors are only one portion of the error budget.  Biases in the mean 

climatology, variability not represented in the 1993–2006 synthetic OHCA, and 

instrument biases that are difficult to detect and quantify could be large (AchutaRao et 

al. 2007; Gouretski and Koltermann 2007; Willis et al. 2007; Wunsch et al. 2007).  

Currently the structure of the globally integrated OHCA curve is uncertain, primarily 

due to an apparent temporal bias in the eXpendable BathyThermograph (XBT) data 

(Gouretski and Koltermann 2007) that is plausibly owing to temporal variations in XBT 

fall rates (Wijffels et al. 2008), along with a correctable error in about 7% of the Argo 
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profiling floats (Willis et al. 2007; 2008).  It appears that rectification of these biases 

will act to reduce interannual variability in the OHCA curve, but the best corrections 

may not yet be established.  For these reasons, an in situ estimate of the global integral 

of OHCA is not computed here. 
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 APPENDIX A 

Two global integrals 

 

An ideal global integral can be defined as tjiji

Jj
Ii

IdAtrue =!
=
=

,,

,0
,0

, where 
t
I  is the 

true integral, and ji
true

,
 the true value that represents the area jidA ,

 at a location ji, .  

The true field can be separated into a spatial mean and anomaly, 
tjiji
mtruetrue +=

,,
' , 

calculated over A , the area of the ocean and ji
true

,
'  are the spatial anomalies relative 

to a true spatial mean, 
t
m , such that 0'

,,

,0
,0

=!
=
=

jiji

Jj
Ii

dAtrue .  Hence, 

AmI
tt

= ,      (A1) 

 where 
t
m  is estimated from the set of k observations, 

k
obs . 

Given the spatial distribution of 
k

obs  an objective mapping (e.g., Wunsch 1996) 

can be defined, 
jikobs
,

, where 
ji,
 is an objective map to a location ji, .  The 

spatial integral of the mapped observations is then, 

 jijik

Jj
Ii

o dAobsI
,,

,0
,0

!
=
=

= .      (A2)   

 

a. Simple Integral (SI) 

The simplest way to define a spatial integral is in terms of an area-weighted 

integral of the mapped observations or  

ot
II ! .      (A3)          
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This is equivalent to defining the spatial mean on the map grid as 

mapjikjik mobsobs +!
,,
' , such that 0'

,,

,0
,0

!"
=
=

jijik

Jj
Ii

dAobs  and 
map
m  is the mean of 

the map.  When substituted into (A2) these equations yield  

A

I
m o

map = .      (A4) 

If 
t
m  is estimated by 

map
m  then by substituting (A4) into (A1) yields (A3), the SI.  This 

method intrinsically assumes that the data distribution is adequate to produce maps 

resolving the global integral.   

 

b. Weighted integral (WI) 

If correlation length scales used in the objective mapping are small compared to 

spatial scales of the gaps in the distribution of data, or if data are too few to overcome 

the noise to signal ratio used, the mapping will be inadequate in resolving the global 

integral.  To circumvent this problem larger scales could be added to the correlation 

length scale; however there is no obvious physical basis for these additions, and they 

would lead to vastly larger matrices that would require significant computing resources 

to invert.  An alternative option is to define a mean only where there are data, 

repkk mobsobs += ''  such that, 0''
,,

,0
,0

!"
=
=

jijik

Jj
Ii

dAobs , and 
rep
m  is a representative 

spatial mean.  Noting that 
rep
m is a spatial constant, (A2) can be rewritten as, 

jijik
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,0
,0
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=
=

= ,       (A5) 
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where 
jik ,

1 is an objective map to location ji,  where the data at positions k have been 

replaced by the value 1. 

 If 
t
m  is estimated by 

rep
m , then by substituting (A5) into (A1) the true spatial 

integral can be estimated by the WI (a weighted version of the simple integral (A2)), 

jijik

Jj
Ii

o
t

dA

AI
I

,,

,0
,0

1!
=
=

" .       (A6) 

The map  

jik ,
1  = the fractional  “observed” area for a given data distribution, 

k
obs ,       (A7) 

and 

 
A

dA jijik

Jj
Ii

,,

,0
,0

1!
=
=

,                (A8) 

the weights, represent the fraction of  the globe “observed”.   

(A8) is an objective way to estimate the fraction of the “observed” ocean used 

in a global integral.  It is equivalent to only integrating the “observed” ocean and then 

scaling the result by the area of the whole ocean.  As mentioned in the introduction, 

similar calculations have been done before.  The difference here is that the “observed” 

area of the ocean is defined by the scales, error energies, and techniques used in the 

mapping. 

Hence, changing the mapping techniques or parameters would alter the fraction 

of the observed ocean.  In the case shown in the paper the correlation length scales and 

timescales are representative of the upper ocean.  For deep variability it might be 

appropriate to increase these scales, which would result in an increase in the fraction of 
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the ocean observed.  Additionally, it might be interesting to examine longer timescales, 

which would increase the number of observations in a given integral, also increasing 

the fraction of the ocean “observed”.  This exercise might result in an “observed” 

coverage that is adequate before 1967. 
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FIGURE CAPTIONS 

Figure 1.  Percentage of global ice-free ocean sampled for in situ upper (0–750 m) 

Ocean Heat Content Anomaly (OHCA) for each calendar year defined by equation 

(A8). 

Figure 2.  Mean of annual "observed" area coverage computed from equation (A7) for 

years 1955 to 1966. 

 

Figure 3.  Mean of annual "observed" area coverage from 1967 to 2003. 

Figure 4.  Mean of annual "observed" area coverage from 2004 to 2006. 

 

Figure 5.  Standard deviation of annual "observed" area coverage from 1993–2006 

based on 14 one-year maps. 

Figure 6. Annual global integrals of synthetic OHCA in the upper 750 m estimated 

from Aviso SSH.  When computed from the entire Aviso record (thick gray line) the 

OHCA curve has a linear trend of 0.9 ± 0.1 W m–2, a linear trend of 0.8 ± 0.1 W m–2 

when computed from the integrals of subsampled synthetic OHCA  (thin dashed line), 

and a linear trend of 1.0 ± 0.1 W m–2 when computed from the WI of subsampled 

synthetic OHCA (thick dashed line).  These curves are based solely on SSH and 

therefore do not reflect the true warming rate of the upper ocean. 



 33 

Figure 7. Following Fig. 6, but for global OHCA integrals from the Aviso SSH record 

subsampled at 1955 (upper panel) and 1995 (lower panel) in situ data locations.  For the 

1955 data distribution the trend computed from the SI is 0.1 ± 0.1 W m–2 and 0.7 ± 0.7 

W m–2 from the WI.  For the 1995 data distribution the trend from the SI is 0.7 ± 0.1 W 

m–2 and 0.9 ± 0.1 W m–2 from the WI. 

Figure 8. Summary of 13-year warming trends (upper panel) and their 95% confidence 

intervals (lower panel) plotted as a function of each year's data distribution from 1955 

through 2006 for the entire synthetic estimates of OHCA (grey lines), the synthetic 

estimates computed from the SI (thin dashed lines), and the synthetic estimates 

computed from the WI (thick dashed lines). Only the confidence intervals for the entire 

synthetic estimate (lower panel) are shown in the upper panel. 

Figure 9. Mean differences in the true linear trend and the trend computed from both 

the SI (thin dashed line) and the WI (thick dashed line) for 3- to 13-year timescales.  

Differences are averaged over all possible segments of the time series for sampling 

patterns from 1955 to 1966 (upper panel) and 1967 to 2003 (lower panel).  Error bars 

are 95% confidence intervals. 

Figure 10. Following Fig. 9 but for sampling patterns from 2004 to 2006. 
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Figure 11. Sampling error computed following Lyman et al. (2006) from synthetic 

estimates of globally integrated OHCA both for the SI (thin dashed line) and the WI 

(thick dashed line) for each year's data distribution. 

 



 35 

 

Figure 1.  Percentage of global ice-free ocean sampled for in situ upper (0–750 m) 

Ocean Heat Content Anomaly (OHCA) for each calendar year defined by equation 

(A8). 
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Figure 2.  Mean of annual "observed" area coverage computed from equation (A7) for 

years 1955 to 1966.
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Figure 3.  Mean of annual "observed" area coverage from 1967 to 2003. 
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Figure 4.  Mean of annual "observed" area coverage from 2004 to 2006. 
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Figure 5.  Standard deviation of annual "observed" area coverage from 1993–2006 

based on 14 one-year maps. 
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Figure 6. Annual global integrals of synthetic OHCA in the upper 750 m estimated 

from Aviso SSH.  When computed from the entire Aviso record (thick gray line) the 

OHCA curve has a linear trend of 0.9 ± 0.1 W m–2, a linear trend of 0.8 ± 0.1 W m–2 

when computed from the integrals of subsampled synthetic OHCA  (thin dashed line), 

and a linear trend of 1.0 ± 0.1 W m–2 when computed from the WI of subsampled 

synthetic OHCA (thick dashed line).  These curves are based solely on SSH and 

therefore do not reflect the true warming rate of the upper ocean. 
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Figure 7. Following Fig. 6, but for global OHCA integrals from the Aviso SSH record 

subsampled at 1955 (upper panel) and 1995 (lower panel) in situ data locations.  For the 

1955 data distribution the trend computed from the SI is 0.1 ± 0.1 W m–2 and 0.7 ± 0.7 

W m–2 from the WI.  For the 1995 data distribution the trend from the SI is 0.7 ± 0.1 W 

m–2 and 0.9 ± 0.1 W m–2 from the WI. 
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Figure 8.  Summary of 13-year warming trends (upper panel) and their 95% confidence 

intervals (lower panel) plotted as a function of each year's data distribution from 1955 

through 2006 for the entire synthetic estimates of OHCA (grey lines), the synthetic 

estimates computed from the SI (thin dashed lines), and the synthetic estimates 

computed from the WI (thick dashed lines). Only the confidence intervals for the entire 

synthetic estimate (lower panel) are shown in the upper panel. 
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Figure 9. Mean differences in the true linear trend and the trend computed from both 

the SI (thin dashed line) and the WI (thick dashed line) for 3- to 13-year timescales.  

Differences are averaged over all possible segments of the time series for sampling 

patterns from 1955 to 1966 (upper panel) and 1967 to 2003 (lower panel).  Error bars 

are 95% confidence intervals. 



 44 

 

 

Figure 10. Following Fig. 9 but for sampling patterns from 2004 to 2006. 
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Figure 11. Sampling error computed following Lyman et al. (2006) from synthetic 

estimates of globally integrated OHCA both for the SI (thin dashed line) and the WI 

(thick dashed line) for each year's data distribution. 

 


